

ApliL	，
	colurot

```
MAY
DIDOHTHF
```


れepublic of the 挧ilippines週epartment of \mathbb{C} outation Regional Office IX，Zamboanga Peninsula

MATHEMATICS

 $4^{\text {th }}$ QUARTER－Module 3： ELECTRIC AND WATER METER READINGName of Learner：
Grade \＆Section：
Name of School：

Mathematics - Grade 6

Alternative Delivery Mode

Quarter 4 - Module 3: Electric and Water Meter Reading
First Edition, 2020
Republic Act 8293, section 176 states that: No copyright shall subsist in any work of the Government of the Philippines. However, prior approval of the government agency or office wherein the work is created shall be necessary for exploitation of such work for a profit. Such agency or office may, among other things, impose as a condition the payment of royalty.

Borrowed materials (i.e., songs, stories, poems, pictures, photos, brand names, trademarks, etc.) included in this module are owned by their respective copyright holders. Every effort has been exerted to locate and seek permission to use these materials from their respective copyright owners. The publisher and authors do not represent nor claim ownership over them.

Published by the Department of Education
Secretary: Leonor Magtolis Briones
Undersecretary: Diosdado M. San Antonio

	Development Team of the Module	
Writer:		Marivic Rio Mawile Editors:
		Aileen A. Bejerano Rozel J. Lubrica
Illustrator:		Alhidril I. Hairal
Layout Artist:		Merriam Ruth D. Tagupa
Reviewers:	EPS Mathematics	Vilma A. Brown, Ed. D.
	School Head	Raponzel B. Manalo
Management Team: SDS	Roy C. Tuballa, EMD, JD, CESO VI	
	ASDS	Jay S. Montealto, CESO VI
	ASDS	Norma T. Francisco, DM, CESE
	EPS Mathematics	Vilma A. Brown, Ed. D.
	EPS LRMS	Aida F. Coyme, Ed. D.

Printed in the Philippines
Department of Education - Region IX, Zamboanga Peninsula
Office Address: Tiguma, Airport Road, Pagadian City
Telefax:
(062) - 215 - 3751; 991-5975

E-mail Address: region9@deped.gov.ph

Introductory Message

This Self - Learning Module (SLM) is prepared so that you, our dear learners, can continue your studies and learn while at home. Activities, questions, directions, exercises, and discussions are carefully stated to understand each lesson.

Each SLM is composed of different parts. Each part shall guide you step-by-step as you discover and understand the lesson prepared for you.

Pre-tests are provided to measure your prior knowledge of lessons in each SLM. This will tell you if you can proceed on completing this module or if you need to ask your facilitator or your teacher's assistance for a better understanding of the lesson. At the end of each module, you need to answer the post-test to self-check your learning. Answer keys are provided for each activity and test. We trust that you will be honest in using these.
In addition to the material in the main text, notes to the Teacher are also provided to our facilitators and parents for strategies and reminders on how they can best help you with your home-based learning.

Please use this module with care. Do not put unnecessary marks on any part of this SLM. Use a separate sheet of paper in answering the exercises and tests. Read the instructions carefully before performing each task.
If you have any questions using this SLM or any difficulty in answering the tasks in this module, do not hesitate to consult your teacher or facilitator.

Thank you.

What I Need to Know

In this module, you will learn how to read and interpret the readings from electric and water meters. It provides you examples and exercises that will help you find and compute the number of kilowatt-hours used.

At the end of this lesson, you are expected to:

- read and interpret electric and water meter reading (M6ME-IVd-100); and
- solve routine and non-routine problems involving electric and water consumption (M6ME-IV-d-101)

What I Know

Directions: Choose the letter of the correct answer. Write it on a separate sheet.

1. Rene would like to read the electric meter below. If you were Rene, which letter will you choose for the correct reading?

A. 91782 kWh
B. 91673 kWh
C. 91772 kWh
D. 91672 kWh
2. The water meter of a certain laundry shop for one month looks like the figure below. What was the water meter shows in the figure?

A. $8530 \mathrm{~m}^{3}$
B. $7529 \mathrm{~m}^{3}$
C. $8529 \mathrm{~m}^{3}$
D. $9257 \mathrm{~m}^{3}$

For numbers 3-5. Read the problem and answer the questions below.
On the morning of April 1, the electric meter reading was 26010 kWh . On the evening of April 31, the electric meter reading was 26165 kWh .
3. How many kilowatt-hours of electricity were used for April?
A. 515 kWh
B. 155 kWh
C. 551 kWh
D. 255 kWh
4. If the electricity cost is Php 5.50 per kWh , how much is the electricity cost for April?
A. Php 852.50
B. Php 582.50
C. Php 285.50
D. Php 855.20
5. What is the average cost of electricity per day in April?
A. Php 27.50
B. Php 72.50
C. Php 17.50
D. Php 37.50

LESSON 1

Electric and Water Meter Reading and Solving Problem involving electric and Water Consumption

What's In

Directions: Read the given problem carefully, then answer the questions that follow. Write your correct answers on a separate sheet.

[^0]1. What is asked in the problem?
2. What are the given facts?
3. What is the hidden question?
4. What operations to be used?
5. What is the final answer?

What's New

A. Directions: Read the problem.

Mr. De la Cruz is computing his monthly electrical consumption. Based on his electric bill, last month, he was able to consume 00125 kWh . When he checked his digital electric meter, the reading is 00199 kWh . How many kilowatt-hours did Mr. De la Cruz consume this month?
B. Observe the meter readings below.

PRESENT READING

PREVIOUS READING

For us to get the amount of electricity that Mr. De la Cruz consumed, subtract the previous electric meter reading from the present electric meter reading:

$$
00199-00125=74 \mathrm{kWh} .
$$

So, Mr. De la Cruz consumed 74 kWh of electricity for this month.

What is It

A. What is Electric Meter?

Electric meter is used to measure the amount of electricity consumed and this can be expressed in kilowatt-hour (kwh). An electromechanical meter has five dials and inside each dial is a pointer which indicates the number to be read. The pointers of the dials next to each other move in opposite directions. The pointers will alternately turn \curvearrowright clockwise and counterclockwise \curvearrowleft. These dials measure the number of kilowatt-hour you use in 1 s , 10s, 100s, 1000s, and 10000 s .

EXAMPLE:

1 000s

100s

10s

So, the pointers of A, C, and E turn clockwise, and pointers B and D turn counterclockwise.

How do we read an electric meter?

To read electric meters:

1. Always read all the dials from right to left, starting from Dial E to Dial A.
2. Read the number by the pointer of the dial. When the pointer is between two numbers, the lower number is recorded.
3. If the pointer appears to be exactly on a number, check the dial to the right to find out the correct reading.

- If the dial on the right has passed zero, then use the number the pointer is pointing to on the dial you are reading.
- If the dial has not passed zero, then make use of the smaller number on the dial you are reading.

MEANING:

.A.

B.

C.

D.

E.

The illustration shows the following meter reading on each dial:
Dial E: The pointer is directly on number 4. Record as 4.
Dial D: The pointer has just passed 9 and is between 9 and 0 . Record as 9 .
Dial C: The next dial has passed 7 and is between 7 and 8 .
Record the smaller number, which is 7
Dial B : The pointer is almost on 4 but, the dial to its right has not passed zero. So, you would record this as 3 .
Dial A: The pointer is between 5 and 6 . Record the smaller number, which is 5 . Thus, the interpretation of the above electric meter is 53794 kWh (kilowatt-hour).

What is Water Meter?

Water meter is not the same as the electric meter.
A. The older style of water meters is those with small dials. It looks like a series of small clocks that turn clockwise. (see picture below).
B. Water meter is a digital meter that shows 7 digits. The numbers indicate the reading in cubic meters (\boldsymbol{m}^{3}). In a digital water meter, the last three digits from the right represent liters.
The last three digits at the right form a decimal or fractional part when measuring the amount
A. Older Style of the water meter

B. Digital water meter

A. To read old meter reading, we should start reading from right to left (clockwise). Read the number by the pointer of the dial. When the pointer is between two numbers, the lower number is recorded.
B. To read the water meter, we should start reading from right to left, and expressed it in cubic meters.
To get the meter readings in cubic meter, we should multiply 592 by 0.001
$0.001 \mathrm{~m}^{3} \mathrm{x} 592=0.592 \mathrm{~m}^{3}$

BASIC STEPS IN SOLVING ROUTINE WORD PROBLEMS

1. UNDERSTAND

- Know what the problem asked
- Know the given facts

2. PLAN

- Determine the operation to use
- Write the number sentence

3. SOLVE

- Show the solution to the problem

4. CHECK AND LOOK BACK

- Check if the answer is reasonable
- State the complete answer

Read the given problems, then answer the questions that follow.

EXAMPLE 1:

Mario made a record of their 3-month electric consumption. The initial reading is 973 kWh .
April: 1120 kWh May: 1353 kWh June: 1512 kWh
Assume that the basic charge for the first 30 kWh is Php 120.00 and the succeeding kilowatthours is charged Php 6.00.
a. How much will Mario pay for each month?
b. In what month did he pay the most? Least?
c. What is the average monthly consumption?

1. UNDERSTAND
a. What is asked?

- How much will Mario pay for each month?
- In what month did he pay the most? Least?
- What is the average monthly consumption?
b. What are the given facts?
- 973 kWh - the initial reading
- 1120 kWh - April 1353 kWh - May 1512 kWh - June
- Php120.00 - basic charged for 30kWh
- Php 6.00 - charged for the succeeding kilowatt-hour

2. PLAN

a. What operation are we going to use to solve the problem?

To get the amount that Mario will pay for each month, Subtract the present reading from the previous reading.

For the following month, Subtract the previous reading from the current month's reading. Then, to get the amount Mario will pay for each month, Subtract 30 kWh from the monthly consumption. Then multiply the result by Php 6.00

Afterward, add the amount for the first 30 kWh , which is Php 120.00. To get the average monthly consumption, add the 3-month electric consumption then, divide by 3.

3. SOLVE

A. To get every month's electric consumption:

April: $1120-973=147 \mathrm{kwh}$	May: $1353-1120=232 \mathrm{kWh}$	June: $1512-1352=160 \mathrm{kWh}$

Now, to get each monthly consumption amount with the conditions that the first 30 kWh is Php 120.00 and Php 6.00 per remaining kilowatt-hour.

$\begin{aligned} & \text { That is, April: } 147 \mathrm{kWh} \\ & =\text { Php } 120+[(147-30) \times \text { Php } 6] \\ & =\text { Php } 120+(117 \times \text { Php } 6) \\ & =\text { Php } 120+702 \\ & =\text { Php } 822.00 \end{aligned}$	$\begin{aligned} & \text { So, for April, Mario will pay } \\ & \text { Php } 822.00 \\ & \text { May: } 233 \mathrm{kWh} \\ & =\text { Php } 120+[(233-30) \times \text { Php } 6] \\ & =\text { Php } 120+(203 \times \text { Php } 6) \\ & =\text { Php } 120+1218 \\ & =\text { Php } 1,338.00 \end{aligned}$	So, for May, Mario will pay Php 1,338.00 June: 159 kWh $\begin{aligned} & =\text { Php } 120+[(147-30) \times \text { Php } 6] \\ & =\text { Php } 120+(129 \times \text { Php } 6) \\ & =\text { Php } 120+774 \\ & =\text { Php } 894.00 \end{aligned}$ So, for June, Mario will pay Php 894.00

B. See computation (A). The month with the highest (most) electricity consumption was in May with 233 kWh . And the least amount of electricity consumption was in April with 147 kWh .
C. To find the average monthly consumption.

Average monthly consumption $=\frac{147+233+159}{3}=\frac{539}{3}=179.67 \mathrm{kWh}$ So, the average monthly electricity consumption is approximately 179.67 kWh Therefore, the following are the answers to the questions:
a. He will pay Php 822.00, Php 1,338.00, and Php 894.00 for April, May, and June, respectively.
b. The month with the highest (most) electricity consumption was in May. They consumed the least amount of electricity in April.
D. The average electricity consumption is approximately 179.67 kWh .

4. CHECK AND LOOK BACK

Go back to your computation check if all the given values are used correctly about the given condition, especially computing the amounts.

EXAMPLE 2:

For September, Roberto records their water consumption, $0254 m^{3}$. How many cubic meters did they consume if the initial reading is $0113 \mathrm{~m}^{3}$?
A. Having an initial reading of 0113 , so the water consumption of each month is:

September:
$0254 \mathrm{~m}^{3}$ - Present Reading

- $0113 \mathrm{~m}^{3}$ - Previous Reading/Initial Reading
$141 \mathrm{~m}^{3}$ - water consumption for September
Answer: They consumed $141 \mathrm{~m}^{3}$ for September
B. To get the total amount of water consumed:

Add all the water consumption:
$141 \mathrm{~m}^{3}+204 \mathrm{~m}^{3}+190 \mathrm{~m}^{3}=535 \mathrm{~m}^{3}$
Answer: The total amount of water consumption is $535 \mathrm{~m}^{3}$
C. To get the average monthly consumption:

Add all the total water consumption then, divide it by 3 .
Average monthly consumption $\frac{\equiv 535 \mathrm{~m}^{3}}{3}=178.33 \mathrm{~m}^{3}$
So, the average monthly consumption is $178.33 \mathrm{~m}^{3}$

What's More

Directions: Read the following problems and answer the questions that follow.

1. On August 20, the electric meter reading was 3411 kWh . The next month, the reading was 3619 kWh . The cost of electricity per kilowatt-hour is Php 3.00.
a) How much electricity was consumed in a month?
b) How much was the electricity bill for a month?
c) What was the average cost of electricity per day?
2. Last month the water reading was $1342 \mathrm{~m}^{3}$. The following month, the reading was 1395 m^{3}. How many cubic meters of water did Mr. Santos use? If water costs Php 2.65 per cubic meter, how much will Mr. Santos pay?

What I Have Learned

Directions: Write the correct word in each blank.

1. Electric meter is used to measure the amount of electricity consumed and this can be expressed in \qquad .
2. Water meter is used to measure the amount of watery consumed and this is expressed in
3. To compute for electric or water consumption for the particular period of time, simply
\qquad the previous reading from the \qquad reading.
4. List down the 4 steps in problem solving. a. \qquad b. \qquad c. \qquad d. \qquad

What I Can Do

Directions: Read and interpret the electric meter below.

\qquad

Assessment

Directions: Read each item correctly. Select the correct answer and write only the letter of your choice.

1. The previous water reading at Sylvia's residence was $3475 \mathrm{~m}^{3}$; the following month, the reading was $4658 \mathrm{~m}^{3}$. How much water was consumed in one month?
A. $1,183 \mathrm{~m}^{3}$
B. $1,283 \mathrm{~m}^{3}$
C. $2,183 \mathrm{~m}^{3}$
D. $2,283 \mathrm{~m}^{3}$
2. Mr. Cruz's electric meter reading last month was 1045 kWh , and his present electric meter reading is 1078 kWh . What is his electric for the month?
A. 30 kWh
B. 32 kWh
C. 33 kWh
D. 35 kWh
3. What is the reading indicated in the water meter?
A. 32451 ml
B. 32.451 cu.m.
C. 32451 L
D. 32451 cu.m
4. At the end of April, the electric meter reads 3485. At the end of May, the meter reads 3630. What is the electric consumption for May?
A. 140 kWh
B. 145 kWh
C. 150 kWh
D. 155 kWh
5. Rona reads her electric meter. The dials of the meter are shown below. What is the reading of the dials?

A. 62394 kWh
B. 49326 kWh
C. 38226
D. 64932 kWh
6. The previous water reading at Martinez Residence was $2475 \mathrm{~m}^{3}$; the following month, the reading was $3658 \mathrm{~m}^{3}$. How much water was consumed in one month?
A. $1183 \mathrm{~m}^{3}$
B. $1283 \mathrm{~m}^{3}$
C. $2183 \mathrm{~m}^{3}$
D. $2283 \mathrm{~m}^{3}$
7. Based on the problem given in number 6, if the water per cubic meter cost is Php 1.50, how much is their water bill in one month?
A. Php17,745.00
B. Php1,774.50
C. Php 2,774.50
D. Php3,774.50

For number 8-9. Read the problem and answer the questions below.
On the morning of March 1, the electric meter reading was 26010 kWh . On the evening of March 31, the electric meter reading was 26165 kWh .
8. How many kilowatt-hours of electricity were used during March?
A. 515 kWh
B. 155 kWh
C. 551 kWh
D. 255 kWH
9. If the electricity cost is Php 5.50 per kWh, how much is the electricity cost for March?
A. Php 852.50
B. Php 582.50
C. Php 285.50
D. Php 855.20
10. What is the average cost of electricity per day during March?
A. Php 27.50
B. Php 72.50
C. Php 17.50
D. Php 37.50

Answer Key

References:

Jaime R. Burgos, Marjoseph H. Perez, and Donnel P. Placer,2016 by Vibal Group Inc. March 21 Century Mathletes 6; by Book Media press, Inc. 21-E Boni Serrano Avenue, Quezon City.

Adela C. Villamayor, Amelia D. Celeridad-Wright, and Eden C. de Joya, by Rex BookStore, Inc. Math for Life 6; by Rex Printing Company, Inc.84-86 P. Florentino St. Sta. Mesa Heights, Quezon City.

Websites

https://www.google.com/search?q=marbles+in+a+jar
https://tinyurl.com/y5stja4p

[^0]: A block of wood has a length of 30 cm , a width of 20 cm , and a height of 10 cm . If it is cut into cubes of 5 cm on each side, how many cubes can be produced?

